RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1981 Volume 104, Pages 123–129 (Mi znsl3383)

This article is cited in 3 papers

Asymptotics of some functions generalizing the Euler gamma-function

M. A. Kovalevsky


Abstract: Asymptotic behavior of two classes of functions defined by some integrals is considered. The functions $1/\Gamma(z)$ and $1/\Gamma(z+1)$ are examples of functions of this classes. The problem of investigation of this functions arises from the “connection problem” for a linear ordinary differential equations with two singular points. The theorem giving asymptotics of these functions when $|z|\to\infty$ in a certain sector is proved by making use of some lemmas and saddle point method.

UDC: 517.524


 English version:
Journal of Soviet Mathematics, 1982, 20:1, 1826–1830

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024