Abstract:
We consider Sturm–Liouville operators $-y''+v(x)y$ on $[0,1]$ with Dirichlet boundary conditions $y(0)=y(1)=0$. For any $1\le p<\infty$, we give a short proof of the characterization theorem for the spectral data corresponding to $v\in L^p(0,1)$. Bibl. – 10 titles.
Key words and phrases:Sturm–Liouville operators, characterization of spectral data.