RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2010 Volume 375, Pages 48–60 (Mi znsl3607)

This article is cited in 7 papers

Dennis–Vaserstein type decompositions

N. A. Vavilov, S. S. Sinchuk

Saint-Petersburg State University, Saint-Petersburg, Russia

Abstract: We prove a generalisation of Dennis–Vaserstein decomposition for an arbitrary pair of maximal parabolic subgroups $P_r$ and $P_s$ in the general linear group $\mathrm{GL}(n,R)$, provided that $r-s\geq\mathrm{sr}(R)$. The usual Dennis–Vaserstein decomposition is the special case where $r=n-1$, $s=1$. Bibl. – 23 titles.

Key words and phrases: general linear group, lementary subgroup, parabolic subgroups, stable rank, Dennis–Vaserstein decomposition.

UDC: 513.6

Received: 13.03.2010


 English version:
Journal of Mathematical Sciences (New York), 2010, 171:3, 331–337

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024