RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1996 Volume 233, Pages 142–182 (Mi znsl3666)

This article is cited in 46 papers

Existence, uniqueness and attainability of periodic solutions of the Navier–Stokes equations in exterior domains

P. Maremontia, M. Padulab

a Dipartimento di Matematica, Università della Basilicata
b Dipartimento di Matematica, Università di Ferrara

Abstract: For arbitrary domain $\Omega\subset\mathbb R^n$, $n=2,3$, $\Omega\ne\mathbb R^2$, we prove the existence of weak periodic solutions to the Navier–Stokes equations and of regular solutions if the data are small or satisfy certain symmetry conditions. We show also that the periodic regular solutions are stable. Bibl. 38 titles.

UDC: 517.9

Received: 21.05.1996

Language: English


 English version:
Journal of Mathematical Sciences (New York), 1999, 93:5, 719–746

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024