RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1996 Volume 233, Pages 183–209 (Mi znsl3667)

This article is cited in 20 papers

Forward-backward parabolic equations and hysteresis

P. I. Plotnikov

Новосибирск

Abstract: The following initial-boundary value problem for the forwardbackward parabolic equation in the bounded region $\Omega\in R^d$, $1\le d\le3$, is considered,
$$ \begin{gathered} \Omega\times(0,T)\colon\ u_t=\Delta\varphi(u),\qquad\partial\Omega\times(0,T)\colon\ \nabla\varphi(u)\cdot n=0,\\ \Omega\colon\ u(\cdot,0)=u_0\in L_\infty(\Omega),\qquad\varphi(u_0)\in H_1(\Omega). \end{gathered} $$
It is supposed that the function $\varphi$ decreases monotonically on the interval $(-1,1)$ increases outside one and $|u_0|\ge1$. It is proved that this problem has the entropy solutions which describe the phase transition process with hysteresis. Bibl. 11 titles.

UDC: 517.9

Received: 10.09.1995

Language: English


 English version:
Journal of Mathematical Sciences (New York), 1999, 93:5, 747–766

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024