RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2010 Volume 383, Pages 77–85 (Mi znsl3873)

This article is cited in 2 papers

On the components of the lemniscate containing no critical points of a polynomial other than its zeros

V. N. Dubinin

Institute of Applied Mathematics, Far-Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia

Abstract: Let $P$ be a complex polynomial of degree $n$ and let $E$ be a connected component of the set $\{z\colon|P(z)|\leq1\}$ containing no critical points of $P$ other than its zeros. We prove the inequality $|(z-a)P'(z)/P(z)|\leq n$ for all $z\in E\setminus\{a\}$, where $a$ is the zero of the polynomial $P$ lying in $E$. Equality is attained for $P(z)=cz^n$ and any $z$, $c\neq0$. Bibl. 4 titles.

Key words and phrases: polynomial, lemniscate, Steiner symmetrization.

UDC: 517.54

Received: 17.05.2010


 English version:
Journal of Mathematical Sciences (New York), 2011, 178:2, 158–162

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024