RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2005 Volume 323, Pages 215–222 (Mi znsl388)

This article is cited in 1 paper

Existence of nonnegative solutions of singular boundary-value problems for second-order ordinary differential equations

M. N. Yakovlev

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: It is proved that the boundary-value problem
$$ -u''+p(t)u+q(t)u^n=f(t), \quad u(a)=u(b)=0, \quad n\ge 2, $$
has a unique nonnegative solution if the following conditions are fulfilled:
\begin{gather*} 0\le q (t)[(b-t)(t-a)]^{\frac{n+1}{2}}\in L(a,b); \quad 0\le f(t)\sqrt{(b-t)(t-a)}\in L(a,b); \\ 1-\frac1{b-a}\int^{b}_{a}p^-(t)(t-a)(b-t)dt>0. \end{gather*}
Bibliography: 2 titles.

UDC: 519

Received: 23.05.2005


 English version:
Journal of Mathematical Sciences (New York), 2006, 137:3, 4879–4884

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024