Abstract:
Let $r_k(n)$ denote the number of representations of a positive integer $n$ as the sum of $k$ squares. We prove that
$$
\sum_{n\le x}r^2_3(n)=Cx^2+O\Big(x^\frac32\big(\log x\big)^\frac72\Big),
$$
where $C>0$ is a certain constant, and that
$$
\sum_{n\le x}r^2_4(n)=32\zeta(3)x^3+O\Big(x^2\big(\log x\big)^\frac53\Big).
$$
Bibl. 14 titles.
Key words and phrases:lattice point, sum of squares, Jacobi symbol.