RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1981 Volume 109, Pages 3–33 (Mi znsl3917)

This article is cited in 3 papers

System of inequalities

V. A. Bykovskii


Abstract: Let $N_{k,n,r}(P)$ be a number of integer solutions of the system of inequalities
$$ |x_1^\nu+\dots+x_k^\nu-y_1^\nu-\dots-y_k^\nu|\le P^{\nu-r},\ \ 1\le\nu\le n;\quad1\le x_1,\dots,x_k,y_1,\dots,y_k\le P. $$
The main result is the following estimate for $k-\frac{n^2}4\gg nr\log r$
$$ N_{k,n,r}(P)\ll P^{2k-\frac{n(n+1)}2+\frac{(n-r)(n-r+1)}2}. $$
This estimate has the right order with respect to $P$. For $r=n$ this is the classical Vinogradov mean value theorem.

UDC: 511.292


 English version:
Journal of Soviet Mathematics, 1984, 24:2, 159–178

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024