RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2005 Volume 322, Pages 83–106 (Mi znsl395)

This article is cited in 57 papers

Rauzy tilings and bounded remainder sets on the torus

V. G. Zhuravlev

Vladimir State Pedagogical University

Abstract: For the two dimensional torus $\mathbb{T}^2$ we construct the Rauzy tilings $d^0\supset d^1\supset\ldots\supset d^m\supset\ldots$, where each tiling $d^{m+1}$ turns out by inflation of $d^{m}$. The following results are proved:
1) Any tiling $d^{m}$ is invariant with respect to the shift $S(x)=x+\begin{pmatrix} \zeta \\ \zeta ^2\end{pmatrix}\mod\mathbb{Z}^2$, here $\zeta^{-1}> 1$ is a Pisot number satisfying the equation $x^3-x^2-x-1=0$.
2) The induced map $S^{(m)}=S|_{B^m d}$ is an exchange transformation of $B^m d\subset\mathbb{T}^2$, where $d=d^0$ and $B=\begin{pmatrix} - \zeta & - \zeta \\ 1-\zeta ^2 & \zeta^2\end{pmatrix}$.
3) The map $S^{(m)}$ is a shift of the torus $B^m d\simeq\mathbb{T}^2$ and $S^{(m)}$ is isomorphic to the initial shift $S$. It means that $d^m$ are infinite differentiable tilings.
Let $Z_N(X)$ be equal to the number of points in the orbit $S^1(0), S^2(0)$, $\ldots,S^N(0)$ visited the domain $B^m d$. Then the remainder $r_N(B^md)=Z_N(B^m d)-N\zeta^m$ satisfies $-1.7<r_N(B^m d)<0.5$ for all $m$.

UDC: 519.68

Received: 05.03.2005


 English version:
Journal of Mathematical Sciences (New York), 2006, 137:2, 4658–4672

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025