RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2011 Volume 389, Pages 191–205 (Mi znsl4125)

This article is cited in 3 papers

On the definition of $B$-points of a Borel charge on the real line

P. A. Mozolyako

Saint-Petersburg State University, Saint-Petersburg, Russia

Abstract: Let $\mu$ be a Borel charge (i.e., a real Borel measure) on $\mathbb R$, and let $P_{(y)}(t)=\frac y{\pi(y^2+t^2)}$, $y>0$, $t\in\mathbb R$, denote the Poisson kernel. Bourgain proved in [1,2] that for a nonnegative $\mu$ and for numerous $x\in\mathbb R$ the variation of the function $y\mapsto(\mu*P_{(y)})(x)$ on $(0,1]$ is finite. This is true in particular for the so-called $B$-points $x$ (see e.g., [4]). In the present article new descriptions of $B$-points are given adjusted to some applications of this notion.

Key words and phrases: vertical variation of a charge, Bourgain point, average variation of a charge.

UDC: 517.5

Received: 20.06.2011


 English version:
Journal of Mathematical Sciences (New York), 2012, 182:5, 690–698

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024