RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2005 Volume 321, Pages 275–280 (Mi znsl420)

On the Galois spectra of polynomials with integral parameters

A. È. Sergeev, A. V. Yakovlev

Saint-Petersburg State University

Abstract: We prove that there exists a polynomial $F(x,t)$ with rational coefficients whose degree with respect to $x$ is equal to 4, such that for every integer the Galois group of the decomposition field of the polynomial $F(x,a)$ is not the dihedral group, but any other transitive subgroup of the group $S_4$ can be represented as the Galois group of the decomposition field of the polynomial $F(x,a)$ for some integer $a$.

UDC: 512.623.3

Received: 10.12.2004


 English version:
Journal of Mathematical Sciences (New York), 2006, 136:3, 3984–3987

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024