RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1997 Volume 237, Pages 21–30 (Mi znsl423)

This article is cited in 1 paper

Estimates of the Levy constant for $\sqrt p$ and class number one criterion for $\mathbb Q(\sqrt p)$

E. P. Golubeva

St. Petersburg State University of Telecommunications

Abstract: Let $p\equiv3\!\pmod4$ be a prime, let $l(\sqrt p)$ be the length of the period of the expansion of $\sqrt p$ into a continued fraction, and let $h(4p)$ be the class number of the field $\mathbb Q(\sqrt p)$. Our main result is as follows. For $p>91$, $h(4p)=1$ if and only if $l(\sqrt p)>0.56\sqrt p\ L_{4p}(1)$, where $L_{4p}(1)$ is the corresponding Dirichlet series. The proof is based on studying linear relations between convergents of the expansion of $\sqrt p$ into a continued fraction.

UDC: 511.334

Received: 09.12.1996


 English version:
Journal of Mathematical Sciences (New York), 1999, 95:3, 2185–2191

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024