RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1995 Volume 227, Pages 74–82 (Mi znsl4266)

On the embedding problem with noncommutative kernel of order $p^4$. VI

V. V. Ishkhanov, B. B. Lur'e

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: In the case of number fields the embedding problem of a $p$-extension with non-Abelian kernel of order $p^4$ is studied. The two kernels of order $3^4$ with generators $\alpha,\gamma$ and relations $\alpha^9=1$, $[\alpha,\gamma]^3=1$, $[\alpha,\alpha,\gamma]=1$, $[\alpha,\gamma,\gamma]=\alpha^3$, $\gamma^3=1$ or $\gamma^3=\alpha^3$, and the kernel of order $2^4$ with generators $\alpha,\beta,\gamma$ and relations $\alpha^4=1$, $\beta^2=\gamma^2$, $[\alpha,\beta]=1$, $[\alpha,\gamma]=1$, $[\beta,\gamma]=\alpha^2$ are considered. For kernels of odd order the embedding problem is always solvable. For the kernel of order 16 the solvability conditions are reduced to those for the associated problems at the Archimedean points, and to the compatibility condition. Bibliography: 9 titles.

UDC: 512.623.32

Received: 03.03.1995


 English version:
Journal of Mathematical Sciences (New York), 1998, 89:2, 1127–1132

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024