This article is cited in
3 papers
Maximum modulus estimates for generalized solutions of doubly nonlinear parabolic equations
A. V. Ivanov St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract:
Maximum modulus estimates are obtained for generalized solutions of doubly nonlinear parabolic equations
(DNPE). The equation
\begin{equation*}
\partial u/\partial t-\operatorname{div}\{|u|^l|\nabla u|^{m-2}\nabla u\}=0,\qquad m>1,\quad l>1-m,
\tag{1}
\end{equation*}
is a prototype of a DNPE. Exact conditions on the parameters
$m$ and
$l$ are found that guarantee a local
$L_\infty$-estimate for generalized solutions of Eq. (1), namely,
\begin{equation*}
\frac{\sigma+1}{\sigma+2}>\frac1m-\frac1n,\quad\sigma=\frac l{m-1},\quad m>1,\quad l>1-m.
\tag{2}
\end{equation*}
Global maximum modulus estimates for generalized solutions of the first initial boundaty-value problem for a DNPE are given if the parameters
$m$ and
$l$ satisfy condition (2). Bibliography: 13 titles.
UDC:
517.9
Received: 01.02.1995