This article is cited in
2 papers
Invariant subspaces of multiplication by $z$ of $E^p$ in a multiply connected domain
D. V. Yakubovich
Abstract:
Let
$G$ be a multiply connected domain with boundary
$\Gamma_0\cup\dots\cup\Gamma_s$ where
$\Gamma_j$ are closed piecewice
$C^2$-smooth curves.
A subspace
$Z$ in Hardy–Smirnov class
$E^p(G)$,
$1\leqslant p\leqslant\infty$,
is called invariant if
$zf(z)\in Z$ for
$f\in Z$. Define domains
$V_j$ by
$\Gamma_j=\partial V_j$,
$\mathbb{C}\setminus G=V_0\cup\dots\cup V_s$;
suppose that
$V_0$ is unbounded. For an invariant subspace
$Z$ in
$E^p(G)$ the function
$\chi_Z\in L^\infty(\Gamma_{int})$, $\Gamma_{int}{\stackrel{def}=}\Gamma_1\cup\dots\cup\Gamma_s$ is defined
by the equalities
$\mathcal{H}_j{\stackrel{def}=}\mathrm{clos}_{L^P(\Gamma_j)}\{x(\Gamma_j):x\in Z\}=(\overline{\chi}_Z\mid\Gamma_j)\cdot E^p(V_j)$,
$|\chi_Z|\equiv1$ a.e. on
$\Gamma_j$ for
$j\geqslant1$ $(\chi_Z\mid\Gamma_j\equiv0\ if\ \mathcal{H}_j=L^p(\Gamma_j))$.
THEOREM 1. (i) Let
$Z$ be an invariant subspace in
$E^p(G)$
such that
$GCD(Z)=1$. Then
$$
Z=\{x: \varphi\cdot x\in E_0^{1,\infty}(V_j), j\geqslant1\}.
$$
Here
$\varphi$ is measurable function on
$\Gamma_{int}$,
$\varphi\equiv0$ or
$|\varphi|\geqslant1$,
a.e. on each $\Gamma_j: L_0^{1,\infty}(\Gamma_j)=\{f\in L^{1/2}(\Gamma_j): m\{|f|\}>A\}=o(A^{-1})$,
$A\to+\infty$ (
$m$ is the Lesbegue measure),
$E_0^{1,\infty}(V_j)=E^{1/2}(V_j)\cap L_0^{1,\infty}(\Gamma_j)$,
and
$GCD(Z)$ is common least divisor of inner
parts of functions in
$Z$.
(ii) If the inequality $d\,\omega_{V_j}\leqslant cd\,\omega_G\mid\Gamma_j$ holds
forharmonic measures for
$j\geqslant1$, then
$$
Z=\{x: \chi_z x\mid\Gamma_j\in E^p(V_j),\ \rho\cdot x\in L_0^{1,\infty}(\Gamma_{int})\}
$$
for a measurable function
$\rho$ on
$\Gamma_{int}$.
THEOREM 2. Let
$\Gamma_j$ be analytic,
$\tau_j$ be conformal mappings of
$V_j$ onto the unit disk (
$j\geqslant1$). Suppose
$Z$ is invariant subspace
in
$E^2(G)$,
$GCD(Z)=1$. There еxist outer
$g_j\in E^2(V_j)$,
inner
$\theta_j$ in
$V_j$,
$m_j\in\mathbb{Z}$ such that
$|g_j|^2=\mathrm{Re}\,(\tau_j\theta_j v_j)+1$ a.e.
on
$\Gamma_j$ for some
$v_j\in E_0^{1,\infty}(V_j)$ and
$$
Z=\{x: x\mid\Gamma_j\in(\chi\mid\Gamma_j)E^2(V_j),\ |xg_j^{-1}|\in L^2(\Gamma)\ for\ j\geqslant1\}.
$$
Here
$\chi\in L^\infty(\Gamma_{int})$ is defined by $\chi\mid\Gamma_j=\tau_j\theta_jg_j/\overline{g}_j$.
Conversely, every
$g_j$,
$\theta_j$,
$m_j$ satisfying the above conditions give rise
to an invariant subspace
$Z$ such that
$GCD(Z)=1$ and
$\chi_z=\chi$.
This generalizes the results of Hitt and Sarason [5,6].
UDC:
517.984