RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1997 Volume 241, Pages 5–29 (Mi znsl480)

This article is cited in 1 paper

Diophantine representations of linear recurrent sequences. II

M. A. Vsemirnov

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: Direct constructions of diophantine representations of linear recurrent sequences are considered. Diophantine representations of the sets of values of third-order sequences with negative discriminant are found. As an auxiliary problem we study the structure of the multiplicative group of the ring $\mathbb Z[\lambda]$, where $\lambda$ is an invertible algebraic number (unit) in a real quadratic field or in a cubic field of a negative discriminant. Tge index of the subgroup $\langle\pm\lambda^n\mid n\in\mathbf Z\rangle$ in the group $(\mathbf Z[\lambda])^*$ and the generator of $(\mathbf Z[\lambda])^*$ are evaluated explicitly.

UDC: 511.5

Received: 10.10.1997


 English version:
Journal of Mathematical Sciences (New York), 2000, 98:4, 427–441

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024