RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1990 Volume 186, Pages 33–36 (Mi znsl4845)

This article is cited in 1 paper

Finite-dimensional spectral inverse problem for the bundle of Hermite quadratic forms

M. I. Belishev, M. V. Putov


Abstract: The paper is devoted to recovering the coefficients of Hermite quadratic forms $c(x,x)$, $m(x,x)$ in the special basis, in which the matrix of $c(x,x)$ is tridiagonal and matrix of $m(x,x)$ is diagonal. The form $c(x,x)$ is positively definited. The form $m(x,x)$ is nondegenerated, but is not positively definite. The inverse problem data consist of the spectrum $\lambda_1,\dots,\lambda_n$ of bundle $\Pi_\lambda(x)=c(x,x)-\lambda m(x,x)$ and the set of numbers $\rho_1,\dots,\rho_n$ connected with the bundle of main normed elements.

UDC: 517.946


 English version:
Journal of Mathematical Sciences, 1995, 73:3, 317–319

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024