RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1992 Volume 201, Pages 124–156 (Mi znsl5109)

This article is cited in 17 papers

Estimates of capacities associated with Besov spaces

Y. V. Netrusov


Abstract: Let $X$ be the Besov space $BL_{p,\theta}^l(\mathrm{R}^n)$, $0<p<\infty$, $0<\theta\leqslant\infty$, $0<lp<n$. Let $\overline{\mathrm{cap}}(\cdot,X)$ be the capacity associated with the space $X$ (defined on subsets of $\mathrm{R}^n$) and $\varphi$ be a function defined on $[0,1]$ such that $\varphi(0)=0$, $\varphi(1)=1$ and for some $\varepsilon>0$ the functions $\varphi(t)t^{-\varepsilon}$, $t^{n-\varepsilon}/\varphi(t)$ increase.
DEFINITON. Let $A\subset\mathrm{R}^n$, $0<\beta<\infty$. Define
$$ h_{\varphi,\beta}(A)=\inf\left(\sum_{i=0}^{+\infty}(m_i\omega(2^{-i}))^\beta\right)^{1/\beta}, $$
where the infimum is taken over all coverings of $A$ by a countable number of balls, whose radii $r_j$ do not exceed 1, while $m_i$ is the number of balls from this covering whose radii $r_j$ belong the set $(2^{-i-1},2^{-i}]$, $i\in N_0$.
THEOREM 1. Let $p\leqslant1$, $\theta=\infty$, and let the function $\varphi(t)t^{lp-n}$ increase. Then the following condition are equivalent:
THEOREM 2. Let $\theta<1$. Then for any set $A$ the inequalities $c_1\overline{\mathrm{cap}}(A,X)\leqslant h_{t^{n-lp},\theta/p}(A)\leqslant c_2\overline{\mathrm{cap}}(A,X)$ hold.

UDC: 517.518


 English version:
Journal of Mathematical Sciences, 1996, 78:2, 199–217

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024