RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2013 Volume 418, Pages 184–197 (Mi znsl5722)

This article is cited in 2 papers

On the Dedekind zeta function

O. M. Fomenko

St. Petersburg Department of the Steklov Mathematical Institute, St. Petersburg, Russia

Abstract: Let $K_n$ be a number field of degree $n$ over $\mathbb Q$. Denote by $A_{K_n}(x)$ the number of ideal with norm $\leq x$. Landau's classical estimate is
$$ A_{K_n}(x)=\Lambda_nx+O(x^{(n-1)/(n+1)}). $$
In this paper the error term is improved for the non-normal field $K_4=\mathbb Q(\root4\of m)$ and for $K_6$, the normal closure of a cubic field $K_3$ with the Galois group $S_3$.

Key words and phrases: Dedekind zeta function, ideal distribution, Artin function.

UDC: 511.466+517.863

Received: 26.08.2013


 English version:
Journal of Mathematical Sciences (New York), 2014, 200:5, 624–631

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024