RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2013 Volume 419, Pages 139–153 (Mi znsl5742)

This article is cited in 2 papers

Bounds for the largest two eigenvalues of the signless Laplacian

L. Yu. Kolotilina

St. Petersburg Department of the Steklov Mathematical Institute, St. Petersburg, Russia

Abstract: In the paper, a new upper bound for the largest eigenvalue $q_1$ of the signless Laplacian $Q_G=D_G+A_G$ of a graph $G$, generalizing and improving the known bound $q_1\le\Delta_1+\Delta_2$, where $\Delta_1\ge\cdots\ge\Delta_n$ are the ordered vertex degrees, and new lower bounds for the second largest eigenvalue $q_2$ of $Q_G$ are proved. As implications, an upper bound for the difference $q_1-\mu_1$ of the largest eigenvalues of the signless Laplacian $Q_G$ and of the Laplacian $L_G=D_G-A_G$, an upper bound for the largest eigenvalue of the adjacency matrix $A_G$, and an upper bound for the difference $q_1-q_2$ are obtained. All the bounds suggested are expressed in terms of the vertex degrees.

Key words and phrases: graph, adjacency matrix, Laplacian, signless Laplacian, largest eigenvalue, second largest eigenvalue, upper bound, lower bound.

UDC: 512.643

Received: 01.11.2013


 English version:
Journal of Mathematical Sciences (New York), 2014, 199:4, 448–455

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024