RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1992 Volume 203, Pages 5–11 (Mi znsl5767)

Integro-differential equations of the convolution on a finite interval with a kernel having logarithmic singularity

I. V. Andronov


Abstract: Integro-differential equations of the convolution are examined
$$ \frac{d^{2n}}{dx^{2n}}\int^1_{-1}\left(a((x-t)^2)\ln|x-t|+b((x-t)^2)\right)\varphi(t)\,dt=f(x). $$
Here functions $a(s)$ and $b(s)$ belong to $C^\infty$ and decrease at infinity. The Fourier transform of the kernel is supposed to be sectorial, i.e. it has a positive projection on some direction in complex plane. The theorem of existence and uniqueness of solutions in spaces defined by the representation
$$ \varphi(t)=(1-t^2)^{\delta_n}\psi(t)\qquad\delta_n=n-1+\varepsilon,\quad\varepsilon>0,\quad\psi\in C^1[-1,1], $$
is proved. The proprieties of continuity of solutions are established.

UDC: 534.26+517.4


 English version:
Journal of Mathematical Sciences, 1996, 79:4, 1161–1165

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024