RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1997 Volume 249, Pages 102–117 (Mi znsl582)

This article is cited in 6 papers

Discrete spectrum in the gaps of perturbed pseudorelativistic Hamiltonian

M. Sh. Birman, A. B. Pushnitskii

Saint-Petersburg State University

Abstract: Pseudorelativistic Hamiltonian
$$ G_{1/2}=\bigl((-i\nabla-\mathbf A)^2+I\bigr)^{1/2}+W, \qquad x\in\mathbb R^d, \quad d\ge 2, $$
is considered under wide conditions on potentials $\mathbf A(\mathbf x)$, $W(x)$. It is assumed that the real point $\lambda$ is regular for $G_{1/2}$. Let $G_{1/2}(\alpha)=G_{1/2}-\alpha V$, where $\alpha>0$, $V(x)\ge 0$, $V\in L_d(\mathbb R^d)$. Denote by $N(\lambda,\alpha)$ the number of eigenvalues of $G_{1/2}(t)$ that cross the point $\lambda$ as $t$ increases from 0 to $\alpha$. The Weyl type asymptotics for $N(\lambda,\alpha)$ as $\alpha\to\infty$ is obtained.

UDC: 517.94

Received: 04.09.1997


 English version:
Journal of Mathematical Sciences (New York), 2000, 101:5, 3437–3447

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024