RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1997 Volume 249, Pages 294–302 (Mi znsl590)

This article is cited in 3 papers

On the estimate of maximum modulus of solution of stationary problem for the Navier–Stokes equations

V. A. Solonnikov

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: It is shown that the solution of a nonlinear stationary problem for the Navier–Stokes equations in a bounded domain $\Omega\subset\mathbb R^3$ with the boundary conditions $\vec v\big|_{\partial\Omega}=\vec a(x)$ satisfies the inequality
$$ \sup_{x\in\Omega}|\vec v(x)|\le c\Bigl(\,\sup_{x\in\partial\Omega}|\vec a(x)|\Bigr) $$
for arbitrary Reynolds number.

UDC: 517.9

Received: 12.04.1997


 English version:
Journal of Mathematical Sciences (New York), 2000, 101:5, 3563–3569

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024