RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1994 Volume 213, Pages 48–65 (Mi znsl5906)

This article is cited in 25 papers

Existence and uniqueness of regular solution of Cauchy–Dirichlet problem for some class of doubly nonlinear parabolic equations

A. V. Ivanova, P. Z. Mkrtychiana, W. Jägerb

a St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences
b Universität Heidelberg, SFB 359

Abstract: The class of equations of the type
\begin{equation} \partial u/\partial t-\operatorname{div}\vec a(u,\nabla u)=f, \tag{1} \end{equation}
such that
\begin{equation} \begin{gathered} \vec a(u,p)\cdot p\ge\nu_0|u|^l|p|^m-\Phi_0(u),\\ |\vec a(u,p)|\le\mu_1|u|^l|p|^{m-1}+\Phi_1(u) \end{gathered} \tag{2} \end{equation}
with some $m\in(1,2)$, $l\ge0$ and $\Phi_i(u)\ge0$ is studied. Similar equations arise in the study of turbulent filtration of gas or a liquid through porous media. Existence and uniqueness in some class of Hölder continuous generalized solutions of Cauchy–Dirichlet problem for equations of the type (1), (2) is proved. Bibliography: 9 titles.

UDC: 517.9

Received: 10.12.1993


 English version:
Journal of Mathematical Sciences (New York), 1997, 84:1, 845–855

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024