RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1994 Volume 213, Pages 151–163 (Mi znsl5912)

This article is cited in 1 paper

Reciprocal transformations for the radial nonlinear heat equations

V. V. Pukhnachov

M. A. Lavrent'ev Institute of Hydrodynamics

Abstract: Nonlocal transformations of a number of the quasilinear parabolic equations describing spherically symmetrical heat conduction and diffusion processes are considered. One of them transforms the equation $r^{n-1}\theta_r=(r^{n-1}|\theta_r|^l\theta_r)_r$ into equation of the same type but with another value of the exponent $n$. Other transformation converts the equation $r^{n-1}\theta_t=(r^{n-1}\theta^{-2}\theta_r)_r$ into equation whose coefficients do not depend on space variable. The third nonlocal transformation holds invariant the equation $r\theta_r=(r\theta^{-1}\theta_r)_r$. Some exact solutions of the mentioned equations are analysed incidentally. Bibliography: 15 titles.

UDC: 517.946

Received: 20.01.1994


 English version:
Journal of Mathematical Sciences (New York), 1997, 84:1, 911–918

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024