RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1994 Volume 213, Pages 164–178 (Mi znsl5913)

This article is cited in 2 papers

Some remarks on variational problems for functionals with $L\ln L$ growth

G. A. Seregin

St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences

Abstract: Regularity for minimizers of the functional $\int_\Omega|\nabla v|\ln(1+|\nabla v|)\,dx$ on a set of vector-valued functions $v\colon\Omega\subset\mathbb R^n\to\mathbb R^n$, taking prescribed values on the boundary $\partial\Omega$, is studied. It is shown that solution of the dual variational problem belong to the class $W^1_{2,\mathrm{loc}}$. In the case $n=2$ a higher integrability for minimizers of the direct variational problem is proved. Bibliography: 5 titles.

UDC: 517.9

Received: 25.07.1993

Language: English


 English version:
Journal of Mathematical Sciences (New York), 1997, 84:1, 919–929

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024