RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1994 Volume 217, Pages 54–58 (Mi znsl5959)

This article is cited in 4 papers

Singular parts of pluriharmonic measures

E. S. Dubtsov

Saint Petersburg State University

Abstract: A measure $\mu$ defined on the complex sphere $S$ is called pluriharmonic if its Poisson integral is a pluriharmonic function (in the unit ball of $\mathbb C^n$). А probability measure $\rho$ is called representing if $\int_Sf\,d\rho=f(0)$ for all $f$ in the ball algebra. It is shown that singular parts of pluriharmonic measures and representing measures are mutually singular. Bibliography: 5 titles.

UDC: 517.55

Received: 07.02.1994


 English version:
Journal of Mathematical Sciences (New York), 1997, 85:2, 1790–1793

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024