RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1994 Volume 217, Pages 83–91 (Mi znsl5962)

This article is cited in 2 papers

Quantitative aspect of correction theorems. II

S. V. Kislyakov

St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences

Abstract: Let $0<\varepsilon\le1$, $F\in C(\mathbb T)$, $E=\{F\ne0\}$, $\delta>0$. Then there exists a function $G$ with uniformly convergent Fourier series such that $|G|+|F-G|\le(1+\delta)|F|$, $m\{F\ne G\}\le\varepsilon mE$ and $\sup\{|\sum_{k\le j\le l}\hat G(j)\zeta^j|\colon\zeta\in\mathbb T,\ k\le l\}\le\mathrm{const}\|F\|_\infty(1+\log\varepsilon^{-1})$. Bibliography: 3 titles.

UDC: 517.513

Received: 20.12.1993


 English version:
Journal of Mathematical Sciences (New York), 1997, 85:2, 1808–1813

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024