RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2017 Volume 461, Pages 140–147 (Mi znsl6485)

The weak solutions of Hopf type to 2D Maxwell flows with infinite number of relaxation times

N. A. Karazeeva

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia

Abstract: The system of equations, describing motion of fluids of Maxwell type is considered
$$ \frac\partial{\partial t}v+v\cdot\nabla v-\int_0^t K(t-\tau)\Delta v(x,\tau)\,d\tau+\nabla p=f(x,t),\quad\operatorname{div}v=0. $$
Here $K(t)$ is exponential series $K(t)=\sum_{s=1}^\infty\beta_se ^{-\alpha_st}$. The existence of weak solution for initial boundary value problem
$$ v(x,0)=v_0(x),\quad v\cdot n|_{\partial\Omega}=0,\quad\operatorname{rot}v|_{\partial\Omega}=0 $$
is proved.

Key words and phrases: nonnewtonian fluids, integro-differential equations.

UDC: 517

Received: 30.10.2017

Language: English


 English version:
Journal of Mathematical Sciences (New York), 2019, 238:5, 652–657


© Steklov Math. Inst. of RAS, 2024