RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2018 Volume 471, Pages 150–167 (Mi znsl6631)

Green’s function for the Helmholtz equation in a polygonal domain of special form with ideal boundary conditions

M. A. Lyalinov

St. Petersburg State University, St. Petersburg, Russia

Abstract: A formal approach for the construction of the Green's function in a polygonal domain with the Dirichlet boundary conditions is proposed. The complex form of the Kontorovich–Lebedev transform and reduction to a system of integral equations is exploited. The far-field asymptotics of the wave field is discussed.

Key words and phrases: diffraction by a double wedge with polygonal boundary, scattering diagram, integral equations of the second kind, Kontorovich–Lebedev transform, Sommerfeld integral.

UDC: 517.9

Received: 19.10.2018


 English version:
Journal of Mathematical Sciences (New York), 2019, 243:5, 734–745

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024