RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2022 Volume 519, Pages 114–151 (Mi znsl7304)

This article is cited in 1 paper

Homogenization of a one-dimensional periodic elliptic operator at the edge of a spectral gap: operator estimates in the energy norm

A. A. Mishulovich, V. A. Sloushch, T. A. Suslina

Saint Petersburg State University

Abstract: In $L_2(\mathbb{R})$, we consider an elliptic second-order differential operator $A_{\varepsilon}$, $\varepsilon >0$, given by $A_{\varepsilon} = - \frac{d}{dx} g(x/\varepsilon) \frac{d}{dx} + \varepsilon^{-2} p({x}/\varepsilon)$, with periodic coefficients. For small $\varepsilon$, we study the behavior of the resolvent of $A_{\varepsilon}$ in a regular point close to the edge of a spectral gap. We obtain approximation of this resolvent in the “energy” norm with error $O(\varepsilon)$. Approximation is described in terms of the spectral characteristics of the operator at the edge of the gap.

Key words and phrases: periodic differential operators, spectral gap, homogenization, effective operator, corrector, operator error estimates.

UDC: 517.928

Received: 29.10.2022



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024