RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2023 Volume 520, Pages 189–226 (Mi znsl7318)

One-parameter meromorphic solution of the degenerate third Painlevé equation with formal monodromy parameter $a=\pm\mathrm{i}/2$ vanishing at the origin

A. V. Kitaeva, A. Vartanianb

a Steklov Mathematical Institute, Fontanka 27, St. Petersburg 191023, Russia
b Department of Mathematics, College of Charleston, Charleston, SC 29424, USA

Abstract: We prove that there exists a one-parameter family of meromorphic solutions $u(\tau)$ vanishing at $\tau=0$ of the degenerate third Painlevé equation,
\begin{equation*} u^{\prime \prime}(\tau) = \frac{(u^{\prime}(\tau))^{2}}{u(\tau)} - \frac{u^{\prime}(\tau)}{\tau} + \frac{1}{\tau} \left(-8 \varepsilon (u(\tau))^{2} + 2ab \right) + \frac{b^{2}}{u(\tau)},\ \varepsilon=\pm1,\ \varepsilon b>0, \end{equation*}
for formal monodromy parameter $a=\pm\mathrm{i}/2$. We study number-theoretic properties of the coefficients of the Taylor-series expansion of $u(\tau)$ at $\tau=0$ and its asymptotic behaviour as $\tau\to+\infty$. These asymptotics are visualized for generic initial data.

Key words and phrases: Painlevé equation, monodromy data, asymptotics, content of polynomial.

UDC: 517

Received: 26.05.2023

Language: English



© Steklov Math. Inst. of RAS, 2024