RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2004 Volume 314, Pages 15–32 (Mi znsl746)

This article is cited in 3 papers

The distribution of the values of Hecke $L$-functions at 1

E. P. Golubeva

St. Petersburg State University of Telecommunications

Abstract: Let $S_2(q)$ be the set of primitive forms in the space $S_2(\Gamma_0(q))$ of holomorpic $\Gamma_0(q)$-cusp forms of weight $2$. Let $f\in S_2(q)$ and let $L_f(S)$ be the $L$-function of $f(z)$. It is proved that the set $\{\log L_f(1)<x,f\in S_2(q)\}$ has a limit distribution function. The rate of convergence to this limit function is estimated.

UDC: 511.466+517.863

Received: 10.09.2004


 English version:
Journal of Mathematical Sciences (New York), 2006, 133:6, 1611–1621

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024