RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2004 Volume 314, Pages 213–220 (Mi znsl757)

The continuously removable sets for quasiconformal mappings

A. V. Tyutyuev, V. A. Shlyk

Far Eastern National University

Abstract: Let $D$ be a domain in the $n$-dimensional Euclidean space $R^n$, $n\geqslant 2$, and let $E$ be a compact in $D$. The paper presents conditions on the compact $E$ under which any homeomorphic mapping $f\colon D\setminus E\rightarrow R^n$ can be extended to a continuous mapping $f\colon D\rightarrow\bar{R}^n=R^n\cup\{\infty\}$. These conditions define the class of NCS-compacts, which, for $n=2$, coincides with the class of topologically removable compacts for conformal and quasiconformal mappings.

UDC: 517.5

Received: 16.06.2004


 English version:
Journal of Mathematical Sciences (New York), 2006, 133:6, 1728–1732

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024