RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2004 Volume 314, Pages 221–246 (Mi znsl758)

This article is cited in 3 papers

Automorphic $L$-functions in the weight aspect

O. M. Fomenko

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: Let $S_k(\Gamma)$ be the space of holomorphic $\Gamma$-cusp forms $f(z)$ of even weight $k\geqslant12$ for $\Gamma=SL(2,\mathbb Z)$, and let $S_k(\Gamma)^+$ be the set of all Hecke eigenforms from this space with the first Fourier coefficient $a_f(1)=1$. For $f\in S_k(\Gamma)+$, consider the Hecke $L$-function $L(s,f)$. Let
$$ S(k\leqslant K)=\bigcup_{\substack{12\leqslant k\leqslant K\\k\text{ even}}}S_k(\Gamma)^+. $$
It is proved that for large $K$,
$$ \sum_{f\in S(k\leqslant K)}L\Bigl(\frac12,f\Bigr)^4\ll K^{2+\varepsilon}, $$
where $\varepsilon>0$ is arbitrary. For $f\in S_k(\Gamma)^+$ let $L(s,\operatorname{sym}^2f)$ denote the symmetric square $L$-function. It is proved that as $k\to\infty$ the frequence
$$ \frac{\#\{f\mid f\in S_k(\Gamma)^+,L(1,\operatorname{sym}^2f)\leqslant x\}}{\#\{f\mid f\in S_k(\Gamma)^+\}} $$
converges to a distribution function $G(x)$ at every point of continuity of the latter, and for the corresponding characteristic function an explicit expression is obtained.

UDC: 511.466+517.863

Received: 06.09.2004


 English version:
Journal of Mathematical Sciences (New York), 2006, 133:6, 1733–1748

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024