This article is cited in
3 papers
Automorphic $L$-functions in the weight aspect
O. M. Fomenko St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract:
Let
$S_k(\Gamma)$ be the space of holomorphic
$\Gamma$-cusp forms
$f(z)$ of even weight
$k\geqslant12$ for
$\Gamma=SL(2,\mathbb Z)$, and let
$S_k(\Gamma)^+$ be the set of all Hecke eigenforms from this space with the first Fourier coefficient
$a_f(1)=1$. For
$f\in S_k(\Gamma)+$, consider the Hecke
$L$-function
$L(s,f)$. Let
$$
S(k\leqslant K)=\bigcup_{\substack{12\leqslant k\leqslant K\\k\text{ even}}}S_k(\Gamma)^+.
$$
It is proved that for large
$K$,
$$
\sum_{f\in S(k\leqslant K)}L\Bigl(\frac12,f\Bigr)^4\ll K^{2+\varepsilon},
$$
where
$\varepsilon>0$ is arbitrary. For
$f\in S_k(\Gamma)^+$ let
$L(s,\operatorname{sym}^2f)$ denote the symmetric square
$L$-function. It is proved
that as
$k\to\infty$ the frequence
$$
\frac{\#\{f\mid f\in S_k(\Gamma)^+,L(1,\operatorname{sym}^2f)\leqslant x\}}{\#\{f\mid f\in S_k(\Gamma)^+\}}
$$
converges to a distribution function
$G(x)$ at every point of continuity of the latter, and for the corresponding characteristic function an explicit expression is obtained.
UDC:
511.466+517.863
Received: 06.09.2004