Abstract:
Let $f(z)$ be a holomorphic Hecke eigenform of weight $k$ with respect to $SL(2,\mathbb Z)$ and let
$$
L(s,\operatorname{sym}^2f)=\sum\limits^{\infty}_{n=1}c_n n^{-s},\quad
\operatorname{Re}s>1,
$$
denote the symmetric square $L$-function of $f$. A Voronoi type formula for
$$
C(x)=\sum\limits_{n\leqslant x}c_n.
$$
and the relation
$$
C(x)=\Omega_{\pm}(x^{1/3}).
$$
are proved. Heuristic approaches to estimation of exponential sums arising in this connection are considered.