RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2004 Volume 314, Pages 247–256 (Mi znsl759)

This article is cited in 24 papers

Identities involving the coefficients of automorphic $L$-functions

O. M. Fomenko

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: Let $f(z)$ be a holomorphic Hecke eigenform of weight $k$ with respect to $SL(2,\mathbb Z)$ and let
$$ L(s,\operatorname{sym}^2f)=\sum\limits^{\infty}_{n=1}c_n n^{-s},\quad \operatorname{Re}s>1, $$
denote the symmetric square $L$-function of $f$. A Voronoi type formula for
$$ C(x)=\sum\limits_{n\leqslant x}c_n. $$
and the relation
$$ C(x)=\Omega_{\pm}(x^{1/3}). $$
are proved. Heuristic approaches to estimation of exponential sums arising in this connection are considered.

UDC: 511.466+517.863

Received: 06.09.2004


 English version:
Journal of Mathematical Sciences (New York), 2006, 133:6, 1749–1755

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024