RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2007 Volume 346, Pages 149–159 (Mi znsl93)

This article is cited in 2 papers

A finite element method for solving singular boundary-value problems

M. N. Yakovlev

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: It is proved that under certain assumptions on the functions $q(t)$ and $f(t)$, there is one and only one function $u_0(t)\in\overset{o}W{}^1_2(a,b)$ at which the functional
$$ \int^b_a[u'(t)]^2 dt+\int^b_a q(t)u^2(t)dt-2\int^b_a f(t)u(t)dt $$
attains its minimum. An error bound for the finite element method for computing the function $u_0(t)$ in terms of $q(t)$, $f(t)$, and the meshsize $h$ is presented.

UDC: 512

Received: 31.05.2007


 English version:
Journal of Mathematical Sciences (New York), 2008, 150:2, 1998–2004

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024