RUS  ENG
Full version
JOURNALS // Algebra i Analiz

Algebra i Analiz, 2015, Volume 27, Issue 6, Pages 174–198 (Mi aa1472)

Riemann's zeta function and finite Dirichlet series
Yu. V. Matiyasevich

This publication is cited in the following articles:
  1. Yu. V. Matiyasevich, “Calculation of the Values of the Riemann Zeta Function Via Values of its Derivatives at a Single Point”, J Math Sci, 275:1 (2023), 25  crossref
  2. E. A. Karatsuba, “On an evaluation method for zeta constants based on a number theoretic approach”, Problems Inform. Transmission, 57:3 (2021), 265–280  mathnet  crossref  crossref  isi
  3. Matiyasevich Yu., “Continuous Crop Circles Drawn By Riemann'S Zeta Function”, J. Number Theory, 229 (2021), 199–217  crossref  mathscinet  isi
  4. Yu. Matiyasevich, “Plausible ways for calculating the Riemann zeta function via the Riemann-Siegel theta function”, J. Number Theory, 207 (2020), 460–471  crossref  mathscinet  zmath  isi
  5. A.-M. Ernvall-Hytonen, A. Odzak, L. Smajlovic, “On a class of periodic Dirichlet series with functional equation”, Math. Commun., 25:1 (2020), 35–47  mathscinet  zmath  isi
  6. Iyad SUWAN, “Multilevel Evaluation of the General Dirichlet Series”, Advances in the Theory of Nonlinear Analysis and its Application, 4:4 (2020), 443  crossref
  7. A. D. Gerber, E. A. Gerber, “Ob analoge postoyannoi Eilera-Maskeroni i zakonomernostyakh ego izmeneniya”, Mezhdunar. nauch.-issled. zhurn., 2018, no. 4(70), 139–141  mathnet  crossref
  8. Yu. V. Matiyasevich, “A few factors from the Euler product are sufficient for calculating the zeta function with high precision”, Proc. Steklov Inst. Math., 299 (2017), 178–188  mathnet  crossref  crossref  isi  elib


© Steklov Math. Inst. of RAS, 2025