This publication is cited in the following articles:
Yu. V. Matiyasevich, “Calculation of the Values of the Riemann Zeta Function Via Values of its Derivatives at a Single Point”, J Math Sci, 275:1 (2023), 25
E. A. Karatsuba, “On an evaluation method for zeta constants based on a number theoretic approach”, Problems Inform. Transmission, 57:3 (2021), 265–280
Matiyasevich Yu., “Continuous Crop Circles Drawn By Riemann'S Zeta Function”, J. Number Theory, 229 (2021), 199–217
Yu. Matiyasevich, “Plausible ways for calculating the Riemann zeta function via the Riemann-Siegel theta function”, J. Number Theory, 207 (2020), 460–471
A.-M. Ernvall-Hytonen, A. Odzak, L. Smajlovic, “On a class of periodic Dirichlet series with functional equation”, Math. Commun., 25:1 (2020), 35–47
Iyad SUWAN, “Multilevel Evaluation of the General Dirichlet Series”, Advances in the Theory of Nonlinear Analysis and its Application, 4:4 (2020), 443
A. D. Gerber, E. A. Gerber, “Ob analoge postoyannoi Eilera-Maskeroni i zakonomernostyakh ego izmeneniya”, Mezhdunar. nauch.-issled. zhurn., 2018, no. 4(70), 139–141
Yu. V. Matiyasevich, “A few factors from the Euler product are sufficient for calculating the zeta function with high precision”, Proc. Steklov Inst. Math., 299 (2017), 178–188