RUS  ENG
Full version
JOURNALS // Algebra i Analiz

Algebra i Analiz, 2018, Volume 30, Issue 2, Pages 163–187 (Mi aa1585)

On asymptotic expansions of generalized Bergman kernels on symplectic manifolds
Yu. A. Kordyukov

This publication is cited in the following articles:
  1. Kordyukov Yu.A., “Semiclassical Spectral Analysis of the Bochner-Schrodinger Operator on Symplectic Manifolds of Bounded Geometry”, Anal. Math. Phys., 12:1 (2022), 22  crossref  mathscinet  zmath  isi  scopus
  2. Yu. A. Kordyukov, “Berezin–Toeplitz Quantization on Symplectic Manifolds of Bounded Geometry”, Math. Notes, 112:4 (2022), 576–587  mathnet  crossref  crossref  mathscinet
  3. Yu. A. Kordyukov, “Trace formula for the magnetic Laplacian at zero energy level”, Russian Math. Surveys, 77:6 (2022), 1107–1148  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
  4. O. Rouby, J. Sjostrand, San Vu Ngoc, “Analytic bergman operators in the semiclassical limit”, Duke Math. J., 169:16 (2020), 3033–3097  crossref  mathscinet  zmath  isi  scopus
  5. Kordyukov Yu.A., “Semiclassical Spectral Analysis of Toeplitz Operators on Symplectic Manifolds: the Case of Discrete Wells”, Math. Z., 296:3-4 (2020), 911–943  crossref  mathscinet  isi  scopus
  6. L. Charles, B. Estienne, “Entanglement entropy and berezin-toeplitz operators”, Commun. Math. Phys., 376:1 (2020), 521–554  crossref  mathscinet  zmath  isi  scopus
  7. Yu. A. Kordyukov, “The Spectral Density Function of the Renormalized Bochner Laplacian on a Symplectic Manifold”, J Math Sci, 251:5 (2020), 696  crossref
  8. Yu. A. Kordyukov, X. Ma, G. Marinescu, “Generalized bergman kernels on symplectic manifolds of bounded geometry”, Commun. Partial Differ. Equ., 44:11 (2019), 1037–1071  crossref  mathscinet  zmath  isi  scopus


© Steklov Math. Inst. of RAS, 2025