RUS  ENG
Full version
JOURNALS // Algebra i Analiz

Algebra i Analiz, 1990, Volume 2, Issue 2, Pages 141–157 (Mi aa178)

Generalized Toda chains in discrete time
Yu. B. Suris

This publication is cited in the following articles:
  1. S. V. Smirnov, “Darboux integrability of discrete two-dimensional Toda lattices”, Theoret. and Math. Phys., 182:2 (2015), 189–210  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
  2. S. V. Smirnov, “Semidiscrete Toda lattices”, Theoret. and Math. Phys., 172:3 (2012), 1217–1231  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  elib
  3. Rustem Garifullin, Ismagil Habibullin, Marina Yangubaeva, “Affine and finite Lie algebras and integrable Toda field equations on discrete space-time”, SIGMA, 8 (2012), 062, 33 pp.  mathnet  crossref  mathscinet
  4. I. T. Habibullin, “C-Series Discrete Chains”, Theoret. and Math. Phys., 146:2 (2006), 170–182  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
  5. V. L. Vereshchagin, “Soliton solutions of an integrable boundary problem on the half-line for the discrete Toda chain”, Theoret. and Math. Phys., 148:3 (2006), 1199–1209  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
  6. T. G. Kazakova, “Finite-Dimensional Discrete Systems Integrated in Quadratures”, Theoret. and Math. Phys., 138:3 (2004), 356–369  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
  7. A. V. Zabrodin, “A survey of Hirota's difference equations”, Theoret. and Math. Phys., 113:2 (1997), 1347–1392  mathnet  crossref  crossref  mathscinet  isi
  8. PAPAGEORGIOU, V, “ORTHOGONAL POLYNOMIAL APPROACH TO DISCRETE Lax pairS FOR INITIAL BOUNDARY-VALUE-PROBLEMS OF THE QD ALGORITHM”, Letters in Mathematical Physics, 34:2 (1995), 91  crossref  mathscinet  zmath  adsnasa  isi
  9. A. P. Veselov, “Integrable maps”, Russian Math. Surveys, 46:5 (1991), 1–51  mathnet  crossref  mathscinet  zmath  adsnasa  isi


© Steklov Math. Inst. of RAS, 2025