RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ

Алгебра и анализ, 2008, том 20, выпуск 4, страницы 27–63 (Mi aa521)

$\mathrm A_2$-доказательство структурных теорем для группы Шевалле типа $\mathrm F_4$
Н. А. Вавилов, С. И. Николенко

Эта публикация цитируется в следующих статьяx:
  1. N. A. Vavilov, Z. Zhang, “Relative Centralizers of Relative Subgroups”, J Math Sci, 264:1 (2022), 4  crossref
  2. N. A. Vavilov, Z. Zhang, “Relative centralisers of relative subgroups”, Вопросы теории представлений алгебр и групп. 35, Зап. научн. сем. ПОМИ, 492, ПОМИ, СПб., 2020, 10–24  mathnet
  3. Preusser R., “Sandwich Classification For O2N+1(R) and U2N+1(R, Delta) Revisited”, J. Group Theory, 21:4 (2018), 539–571  crossref  mathscinet  zmath  isi
  4. N. A. Vavilov, “Towards the reverse decomposition of unipotents”, Вопросы теории представлений алгебр и групп. 33, Зап. научн. сем. ПОМИ, 470, ПОМИ, СПб., 2018, 21–37  mathnet; J. Math. Sci. (N. Y.), 243:4 (2019), 515–526  crossref
  5. Raimund Preusser, “Sandwich classification for GL n (R), O2n (R) and U2n (R,Λ) revisited”, Journal of Group Theory, 21:1 (2018), 21  crossref
  6. A. Luzgarev, N. Vavilov, “Calculations in exceptional groups, an update”, Теория представлений, динамические системы, комбинаторные методы. XXIV, Зап. научн. сем. ПОМИ, 432, ПОМИ, СПб., 2015, 177–195  mathnet; J. Math. Sci. (N. Y.), 209:6 (2015), 922–934  crossref
  7. N. A. Vavilov, “Decomposition of unipotents for $\mathrm E_6$ and $\mathrm E_7$: 25 years after”, Вопросы теории представлений алгебр и групп. 27, Зап. научн. сем. ПОМИ, 430, ПОМИ, СПб., 2014, 32–52  mathnet  mathscinet; J. Math. Sci. (N. Y.), 219:3 (2016), 355–369  crossref
  8. Hazrat R. Vavilov N. Zhang Z., “Relative Commutator Calculus in Chevalley Groups”, J. Algebra, 385 (2013), 262–293  crossref  mathscinet  zmath  isi  elib
  9. Н. А. Вавилов, А. В. Щеголев, “Надгруппы subsystem subgroups в исключительных группах: уровни”, Вопросы теории представлений алгебр и групп. 23, Зап. научн. сем. ПОМИ, 400, ПОМИ, СПб., 2012, 70–126  mathnet  mathscinet; N. A. Vavilov, A. V. Shchegolev, “Overgroups of subsystem subgroups in exceptional groups: levels”, J. Math. Sci. (N. Y.), 192:2 (2013), 164–195  crossref
  10. Н. А. Вавилов, А. Ю. Лузгарев, “Группа Шевалле типа $\mathrm E_7$ в 56-мерном представлении”, Вопросы теории представлений алгебр и групп. 20, Зап. научн. сем. ПОМИ, 386, ПОМИ, СПб., 2011, 5–99  mathnet; N. A. Vavilov, A. Yu. Luzgarev, “Chevalley group of type $\mathrm E_7$ in the 56-dimensional representation”, J. Math. Sci. (N. Y.), 180:3 (2012), 197–251  crossref
  11. И. М. Певзнер, “Геометрия корневых элементов в группах типа $\mathrm E_6$”, Алгебра и анализ, 23:3 (2011), 261–309  mathnet  mathscinet  zmath  elib; I. M. Pevzner, “The geometry of root elements in groups of type $\mathrm E_6$”, St. Petersburg Math. J., 23:3 (2012), 603–635  crossref  isi  elib
  12. Н. А. Вавилов, “$\mathrm A_3$-доказательство структурных теорем для групп Шевалле типов $\mathrm E_6$ и $\mathrm E_7$. II. Основная лемма”, Алгебра и анализ, 23:6 (2011), 1–31  mathnet  mathscinet  elib; N. A. Vavilov, “An $\mathrm A_3$-proof of the structure theorems for Chevalley groups of types $\mathrm E_6$ and $\mathrm E_7$. II. The main lemma”, St. Petersburg Math. J., 23:6 (2012), 921–942  crossref  isi  elib
  13. Н. А. Вавилов, А. В. Степанов, “Линейные группы над общими кольцами I. Общие места”, Вопросы теории представлений алгебр и групп. 22, Зап. научн. сем. ПОМИ, 394, ПОМИ, СПб., 2011, 33–139  mathnet  mathscinet; N. A. Vavilov, A. V. Stepanov, “Linear groups over general rings. I. Generalities”, J. Math. Sci. (N. Y.), 188:5 (2013), 490–550  crossref
  14. Н. А. Вавилов, В. Г. Казакевич, “Еще несколько вариаций на тему разложения трансвекций”, Вопросы теории представлений алгебр и групп. 19, Зап. научн. сем. ПОМИ, 375, ПОМИ, СПб., 2010, 32–47  mathnet; N. A. Vavilov, V. G. Kazakevich, “More variations on decomposition of transvections”, J. Math. Sci. (N. Y.), 171:3 (2010), 322–330  crossref
  15. Н. А. Вавилов, “Строение изотропных редуктивных групп”, Тр. Ин-та матем., 18:1 (2010), 15–27  mathnet
  16. А. С. Ананьевский, Н. А. Вавилов, С. С. Синчук, “Об описании надгрупп $E(m,R)\otimes E(n,R)$”, Вопросы теории представлений алгебр и групп. 18, Зап. научн. сем. ПОМИ, 365, ПОМИ, СПб., 2009, 5–28  mathnet; A. S. Ananievskiy, N. A. Vavilov, S. S. Sinchuk, “Overgroups of $E(m,R)\otimes E(n,R)$”, J. Math. Sci. (N. Y.), 161:4 (2009), 461–473  crossref  elib
  17. Bak A., Hazrat R., Vavilov N., “Localization-completion strikes again: relative $K_1$ is nilpotent by abelian”, J. Pure Appl. Algebra, 213:6 (2009), 1075–1085  crossref  mathscinet  zmath  isi  elib  scopus
  18. N. Vavilov, A. Luzgarev, A. Stepanov, “Calculations in exceptional groups over rings”, Теория представлений, динамические системы, комбинаторные методы. XVII, Зап. научн. сем. ПОМИ, 373, ПОМИ, СПб., 2009, 48–72  mathnet; J. Math. Sci. (N. Y.), 168:3 (2010), 334–348  crossref
  19. Hazrat R., Vavilov N., “Bak's work on the $K$-theory of rings”, J. K-Theory, 4:1 (2009), 1–65  crossref  mathscinet  zmath  isi  elib  scopus
  20. Н. А. Вавилов, “Нумерология квадратных уравнений”, Алгебра и анализ, 20:5 (2008), 9–40  mathnet  mathscinet  zmath; N. A. Vavilov, “Numerology of square equations”, St. Petersburg Math. J., 20:5 (2009), 687–707  crossref  isi
  21. А. Ю. Лузгарёв, “Описание надгрупп $\mathrm F_4$ в $\mathrm E_6$ над коммутативным кольцом”, Алгебра и анализ, 20:6 (2008), 148–185  mathnet  mathscinet  zmath; A. Yu. Luzgarev, “Overgroups of $\mathrm{F}_4$ in $\mathrm{E}_6$ over commutative rings”, St. Petersburg Math. J., 20:6 (2009), 955–981  crossref  isi
  22. Вавилов Н.А., Степанов А.В., “Надгруппы полупростых групп”, Вестн. Самарского гос. ун-та. Естественнонаучн. сер., 2008, № 3, 51–95  mathscinet  zmath
  23. Н. А. Вавилов, А. К. Ставрова, “Основные редукции в задаче описания нормальных подгрупп”, Вопросы теории представлений алгебр и групп. 16, Зап. научн. сем. ПОМИ, 349, ПОМИ, СПб., 2007, 30–52  mathnet  elib; N. A. Vavilov, A. K. Stavrova, “Basic reductions for the description of normal subgroups”, J. Math. Sci. (N. Y.), 151:3 (2008), 2949–2960  crossref  elib
  24. Н. А. Вавилов, “Как увидеть знаки структурных констант?”, Алгебра и анализ, 19:4 (2007), 34–68  mathnet  mathscinet  zmath; N. A. Vavilov, “Can one see the signs of structure constants?”, St. Petersburg Math. J., 19:4 (2008), 519–543  crossref  isi
  25. Н. А. Вавилов, А. Ю. Лузгарев, “Нормализатор группы Шевалле типа $\mathrm{E}_6$”, Алгебра и анализ, 19:5 (2007), 37–64  mathnet  mathscinet  zmath; N. A. Vavilov, A. Yu. Luzgarev, “The normalizer of Chevalley groups of type $\mathrm{E}_6$”, St. Petersburg Math. J., 19:5 (2008), 699–718  crossref  isi
  26. Н. А. Вавилов, “О подгруппах симплектической группы, содержащих subsystem subgroup”, Вопросы теории представлений алгебр и групп. 16, Зап. научн. сем. ПОМИ, 349, ПОМИ, СПб., 2007, 5–29  mathnet  mathscinet  elib; N. A. Vavilov, “On subgroups of symplectic group containing a subsystem subgroup”, J. Math. Sci. (N. Y.), 151:3 (2008), 2937–2948  crossref  elib
  27. Vavilov N., “An $A_3$-proof of structure theorems for Chevalley groups of types $E_6$ and $E_7$”, Internat. J. Algebra Comput., 17:5–6 (2007), 1283–1298  crossref  mathscinet  zmath  isi  elib
  28. Н. А. Вавилов, А. Ю. Лузгарев, И. М. Певзнер, “Группа Шевалле типа $\mathrm E_6$ в 27-мерном представлении”, Вопросы теории представлений алгебр и групп. 14, Зап. научн. сем. ПОМИ, 338, ПОМИ, СПб., 2006, 5–68  mathnet  mathscinet  zmath  elib; N. A. Vavilov, A. Yu. Luzgarev, I. M. Pevzner, “Chevalley group of type $\mathrm E_6$ in the 27-dimensional representation”, J. Math. Sci. (N. Y.), 145:1 (2007), 4697–4736  crossref  elib
  29. Н. А. Вавилов, М. Р. Гаврилович, С. И. Николенко, “Строение групп Шевалле: Доказательство из Книги”, Вопросы теории представлений алгебр и групп. 13, Зап. научн. сем. ПОМИ, 330, ПОМИ, СПб., 2006, 36–76  mathnet  mathscinet  zmath  elib; N. A. Vavilov, M. R. Gavrilovich, S. I. Nikolenko, “Structure of Chevalley groups: the proof from the Book”, J. Math. Sci. (N. Y.), 140:5 (2007), 626–645  crossref  elib


© МИАН, 2025