RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ

Алгебра и анализ, 2006, том 18, выпуск 1, страницы 144–161 (Mi aa63)

Products of Toeplitz operators on the Bergman spaces $A_\alpha^2$
S. Pott, E. Strouse

Эта публикация цитируется в следующих статьяx:
  1. Kehe Zhu, Fields Institute Communications, 87, Function Spaces, Theory and Applications, 2023, 331  crossref
  2. Sehba B.F., “On the Weighted Estimate of the Bergman Projection”, Czech. Math. J., 68:2 (2018), 497–511  crossref  mathscinet  zmath  isi  scopus
  3. Rahm R., “the Essential Norm of Operators on l(2)-Valued Bergman-Type Function Spaces”, Complex Anal. Oper. Theory, 10:1 (2016), 69–96  crossref  mathscinet  zmath  isi  scopus
  4. Michalska M., Sobolewski P., “Bounded Toeplitz and Hankel Products on the Weighted Bergman Spaces of the Unit Ball”, J. Aust. Math. Soc., 99:2 (2015), 237–249  crossref  mathscinet  zmath  isi  scopus
  5. Mitkovski M., Wick B.D., “A Reproducing Kernel Thesis For Operators on Bergman-Type Function Spaces”, J. Funct. Anal., 267:7 (2014), 2028–2055  crossref  mathscinet  zmath  isi  elib  scopus
  6. Kerr R., “Products of Toeplitz operators on a vector valued Bergman space”, Integral Equations Operator Theory, 66:3 (2010), 367–395  crossref  mathscinet  zmath  isi  scopus
  7. Lu Yu., Liu Ch., “Toeplitz and Hankel Products on Bergman Spaces of the Unit Ball”, Chin. Ann. Math. Ser. B, 30:3 (2009), 293–310  crossref  mathscinet  zmath  isi  scopus
  8. Grudsky S., Vasilevski N., “On the structure of the $C^*$-algebra generated by Toeplitz operators with piece-wise continuous symbols”, Complex Anal. Oper. Theory, 2:4 (2008), 525–548  crossref  mathscinet  zmath  isi  elib  scopus


© МИАН, 2025