Gaven Martin, Cong Yao, “The $L^p$ Teichmüller Theory: Existence and Regularity of Critical Points”, Arch Rational Mech Anal, 248:2 (2024)
Adam Osȩkowski, “Mixed Lp$L^p$ estimates for transforms of noncommutative martingales”, Bulletin of London Math Soc, 2024
Baudoin F., Chen L., “A Note on Second Order Riesz Transforms in 3-Dimensional Lie Groups”, Arch. Math., 118:3 (2022), 291–304
Banuelos R., Baudoin F., Chen L., Sire Ya., “Multiplier Theorems Via Martingale Transforms”, J. Funct. Anal., 281:9 (2021), 109188
Duse E., “Second Order Elliptic Equations and Hodge-Dirac Operators”, J. Funct. Anal., 281:12 (2021), 109267
Rodrigo Bañuelos, Tomasz Gałązka, Adam Osȩkowski, “A dual approach to Burkholder's Lp estimates”, Bulletin of London Math Soc, 53:4 (2021), 1107
Carbonaro A. Dragicevic O., “Convexity of Power Functions and Bilinear Embedding For Divergence-Form Operators With Complex Coefficients”, J. Eur. Math. Soc., 22:10 (2020), 3175–3221
Betancor J.J. Dalmasso E. Farina J.C. Scotto R., “Bellman Functions and Dimension Free l-P-Estimates For the Riesz Transforms in Bessel Settings”, Nonlinear Anal.-Theory Methods Appl., 197 (2020), 111850
Carbonaro A. Dragicevic O., “Bilinear Embedding For Divergence-Form Operators With Complex Coefficients on Irregular Domains”, Calc. Var. Partial Differ. Equ., 59:3 (2020), 104
Carbonaro A. Dragicevic O., “Bounded Holomorphic Functional Calculus For Nonsymmetric Ornstein-Uhlenbeck Operators”, Ann. Scuola Norm. Super. Pisa-Cl. Sci., 19:4 (2019), 1497–1533
Banuelos R., Osekowski A., “Stability in Burkholder'S Differentially Subordinate Martingales Inequalities and Applications to Fourier Multipliers”, J. Math. Pures Appl., 119 (2018), 1–44
Kovac V. Skreb K.A., “Bellman Functions and l-P Estimates For Paraproducts”, Prob. Math. Stat.., 38:2 (2018), 459–479
Carbonaro A., Dragicevic O., “Functional calculus for generators of symmetric contraction semigroups”, Duke Math. J., 166:5 (2017), 937–974
Strzelecki M., “The L^p-norms of the Beurling–Ahlfors transform on radial functions”, Ann. Acad. Sci. Fenn. Ser. A1-Math., 42:1 (2017), 73–93
Perlmutter M., “a Method of Rotations For Levy Multipliers”, Math. Z., 287:3-4 (2017), 797–816
Nolder C.A., Wang G., “Fourier Multipliers and Dirac Operators”, Adv. Appl. Clifford Algebr., 27:2 (2017), 1647–1657
Osekowski A., “Sharp Logarithmic Inequalities for Hardy Operators”, Z. Anal. ihre. Anwend., 35:1 (2016), 1–20
Arcozzi N., Domelevo K., Petermichl S., “Second Order Riesz Transforms on Multiply–Connected Lie Groups and Processes with Jumps”, Potential Anal., 45:4 (2016), 777–794
Kim D., “Martingale Transforms and the Hardy-Littlewood-Sobolev Inequality for Semigroups”, Potential Anal., 45:4 (2016), 795–807
Perlmutter M., “On a Class of Caldern-Zygmund Operators Arising From Projections of Martingale Transforms”, Potential Anal., 42:2 (2015), 383–401
Banuelos R., Osekowski A., “on Astala'S Theorem For Martingales and Fourier Multipliers”, Adv. Math., 283 (2015), 275–302
Banuelos R., Osekowski A., “Sharp Martingale Inequalities and Applications To Riesz Transforms on Manifolds, Lie Groups and Gauss Space”, J. Funct. Anal., 269:6 (2015), 1652–1713
Astala K., Iwaniec T., Prause I., Saksman E., “a Hunt For Sharp l-P-Estimates and Rank-One Convex Variational Integrals”, Filomat, 29:2 (2015), 245–261
Chen X., Qian T., “Non-Stretch Mappings for a Sharp Estimate of the Beurling-Ahlfors Operator”, J. Math. Anal. Appl., 412:2 (2014), 805–815
Domelevo K. Petermichl S., “Sharp l-P Estimates For Discrete Second Order Riesz Transforms”, Adv. Math., 262 (2014), 932–952
Osekowski A., “On Restricted Weak-Type Constants of Fourier Multipliers”, Publ. Mat., 58:2 (2014), 415–443
Banuelos R., Osekowski A., “On the Bellman Function of Nazarov, Treil and Volberg”, Math. Z., 278:1-2 (2014), 385–399
Domelevo K., Petermichl S., “Sharp l-P Estimates For Discrete Second-Order Riesz Transforms”, C. R. Math., 352:6 (2014), 503–506
Osekowski A., “Maximal Weak-Type Inequality For Stochastic Integrals”, Electron. Commun. Probab., 19 (2014), 1–13
Osekowski A., “Maximal Inequalities For Martingales and Their Differential Subordinates”, J. Theor. Probab., 27:1 (2014), 1–21
Osekowski A., “Logarithmic Inequalities for Fourier Multipliers”, Math. Z., 274:1-2 (2013), 515–530
Banuelos R., Baudoin F., “Martingale Transforms and their Projection Operators on Manifolds”, Potential Anal., 38:4 (2013), 1071–1089
Borichev A. Janakiraman P. Volberg A., “Subordination by Conformal Martingales in l-P and Zeros of Laguerre Polynomials”, Duke Math. J., 162:5 (2013), 889–924
Borichev A. Janakiraman P. Volberg A., “On Burkholder Function for Orthogonal Martingales and Zeros of Legendre Polynomials”, Am. J. Math., 135:1 (2013), 207–236
Banuelos R. Osekowski A., “Burkholder Inequalities for Submartingales, Bessel Processes and Conformal Martingales”, Am. J. Math., 135:6 (2013), 1675–1698
Osekowski A., “Sharp Inequalities for the Haar System and Fourier Multipliers”, J. Funct. Space Appl., 2013, 646012
Adam Osȩkowski, “Survey Article: Bellman function method and sharp inequalities for martingales”, Rocky Mountain J. Math., 43:6 (2013)
Astala K., Iwaniec T., Prause I., Saksman E., “Burkholder Integrals, Morrey's Problem and Quasiconformal Mappings”, J Amer Math Soc, 25:2 (2012), 507–531
Banuelos R., Osekowski A., “Martingales and Sharp Bounds for Fourier Multipliers”, Ann Acad Sci Fenn Math, 37:1 (2012), 251–263
Vasyunin V., Volberg A., “Burkholder's Function via Monge-Ampere Equation”, Ill. J. Math., 54:4, SI (2012), 1393–1428
Bogdan K., Wojciechowski L., “Parabolic Martingales and Non-Symmetric Fourier Multipliers”, Prob. Math. Stat.., 32:2 (2012), 241–253
Boros N., Janakiraman P., Volberg A., “Sharp l-P-Bounds for a Small Perturbation of Burkholder's Martingale Transform”, Indiana Univ. Math. J., 61:2 (2012), 751–773
Pattakos N., Volberg A., “A new weighted Bellman function”, C R Math Acad Sci Paris, 349:21–22 (2011), 1151–1154
Dragicevic O., “Some remarks on the L-p estimates for powers of the Ahlfors-Beurling operator”, Arch Math (Basel), 96:5 (2011), 463–471
Petermichl S., Slavin L., Wick B.D., “New Estimates for the Beurling-Ahlfors Operator on Differential Forms”, Journal of Operator Theory, 65:2 (2011), 307–324
Hytonen T.P., “On the Norm of the Beurling-Ahlfors Operator in Several Dimensions”, Canad Math Bull, 54:1 (2011), 113–125
Burgess Davis, Renming Song, Selected Works of Donald L. Burkholder, 2011, 1
Geiss S., Montgomery-Smith S., Saksman E., “On singular integral and martingale transforms”, Trans. Amer. Math. Soc., 362:2 (2010), 553–575
Banuelos R., “The Foundational Inequalities of D. l. Burkholder and Some of their Ramifications”, Ill. J. Math., 54:3 (2010), 789–868
O. Dragicevic, S. Treil, A. Volberg, “A Theorem about Three Quadratic Forms”, International Mathematics Research Notices, 2010
Rodrigo Bañuelos, “The foundational inequalities of D. L. Burkholder and some of their ramifications”, Illinois J. Math., 54:3 (2010)
Vasily Vasyunin, Alexander Volberg, “Burkholder's function via Monge–Ampère equation”, Illinois J. Math., 54:4 (2010)
Prabhu Janakiraman, “Orthogonality in complex martingale spaces and connections with the Beurling–Ahlfors transform”, Illinois J. Math., 54:4 (2010)
Bañuelos R., Janakiraman P., “On the weak-type constant of the Beurling-Ahlfors transform”, Michigan Math. J., 58:2 (2009), 459–477
Dragičević O., Treil S., Volberg A., “A theorem about three quadratic forms”, Int. Math. Res. Not. IMRN, 2008, rnn072, 9 pp.
Petermichl S., Wittwer J., “Heating of the Beurling operator: Sufficient conditions for the two-weight case”, Studia Math., 186:3 (2008), 203–217
Iwaniec T., Martin G., The Beltrami equation, Mem. Amer. Math. Soc., 191, no. 893, 2008, x+92 pp.
Bañuelos R., Janakiraman P., “$L^p$-bounds for the Beurling-Ahlfors transform”, Trans. Amer. Math. Soc., 360:7 (2008), 3603–3612
Petermichl S., “The sharp bound for the Hilbert transform on weighted Lebesgue spaces in terms of the classical $A_p$ characteristic”, Amer. J. Math., 129:5 (2007), 1355–1375
Bañuelos R., Bogdan K., “Lévy processes and Fourier multipliers”, J. Funct. Anal., 250:1 (2007), 197–213
Dragičević O., Petermichl S., Volberg A., “A rotation method which gives linear $L^p$ estimates for powers of the Ahlfors-Beurling operator”, J. Math. Pures Appl. (9), 86:6 (2006), 492–509
Dragičević O., Volberg A., “Bellman functions and dimensionless estimates of Littlewood-Paley type”, J. Operator Theory, 56:1 (2006), 167–198
Dragičević O., Volberg A., “Bellman function, Littlewood-Paley estimates and asymptotics for the Ahlfors-Beurling operator in $L^p(\mathbb C)$”, Indiana Univ. Math. J., 54:4 (2005), 971–995
Dragičević O., Volberg A., “Bellman function for the estimates of Littlewood-Paley type and asymptotic estimates in the $p-1$ problem”, C. R. Math. Acad. Sci. Paris, 340:10 (2005), 731–734
Kari Astala, Tadeusz Iwaniec, Eero Saksman, “Beltrami operators in the plane”, Duke Math. J., 107:1 (2001)