RUS  ENG
Full version
JOURNALS // Algebra i logika

Algebra Logika, 2003, Volume 42, Number 1, Pages 3–25 (Mi al14)

Splitting Properties of Total Enumeration Degrees
M. M. Arslanov, I. Sh. Kalimullin, S. B. Cooper

This publication is cited in the following articles:
  1. ROD DOWNEY, NOAM GREENBERG, MATTHEW HARRISON-TRAINOR, LUDOVIC PATEY, DAN TURETSKY, “RELATIONSHIPS BETWEEN COMPUTABILITY-THEORETIC PROPERTIES OF PROBLEMS”, J. symb. log., 87:1 (2022), 47  crossref
  2. Ganchev H.A., Soskova M.I., “The Jump Hierarchy in the Enumeration Degrees”, Computability, 7:2-3 (2018), 179–188  crossref  mathscinet  zmath  isi  scopus
  3. Richard Elwes, Andy Lewis-Pye, Benedikt Löwe, Dugald Macpherson, Dag Normann, Andrea Sorbi, Alexandra A. Soskova, Mariya I. Soskova, Peter van Emde Boas, Stan Wainer, Benedikt Löwe, “S. Barry Cooper (1943–2015)”, COM, 7:2-3 (2018), 103  crossref
  4. Arno Pauly, Lecture Notes in Computer Science, 10936, Sailing Routes in the World of Computation, 2018, 328  crossref
  5. Soskova A.A., Soskova M.I., “Enumeration Reducibility and Computable Structure Theory”, Computability and Complexity: Essays Dedicated to Rodney G. Downey on the Occasion of His 60Th Birthday, Lecture Notes in Computer Science, 10010, eds. Day A., Fellows M., Greenberg N., Khoussainov B., Melnikov A., Rosamond F., Springer International Publishing Ag, 2017, 271–301  crossref  mathscinet  zmath  isi  scopus
  6. Cai M., Ganchev H.A., Lempp S., Miller J.S., Soskova M.I., “Defining Totality in the Enumeration Degrees”, J. Am. Math. Soc., 29:4 (2016), 1051–1067  crossref  mathscinet  zmath  isi  scopus
  7. Cai M., Lempp S., Miller J.S., Soskova M.I., “on Kalimullin Pairs”, Computability, 5:2 (2016), 111–126  crossref  mathscinet  zmath  isi  scopus
  8. Algebraic Computability and Enumeration Models, 2016, 155  crossref
  9. Andrew Lewis-Pye, Andrea Sorbi, “IN MEMORIAM: BARRY COOPER 1943–2015”, Bull. symb. log, 22:3 (2016), 361  crossref
  10. Hristo Ganchev, Mariya Soskova, “Definability via Kalimullin pairs in the structure of the enumeration degrees”, Trans. Amer. Math. Soc., 367:7 (2014), 4873  crossref
  11. Mariya I. Soskova, Lecture Notes in Computer Science, 7921, The Nature of Computation. Logic, Algorithms, Applications, 2013, 371  crossref
  12. A. A. Soskova, I. N. Soskov, “Quasi-minimal degrees for degree spectra”, Journal of Logic and Computation, 23:6 (2013), 1319  crossref
  13. Harris Ch.M., “Badness and Jump Inversion in the Enumeration Degrees”, Arch. Math. Log., 51:3-4 (2012), 373–406  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
  14. Ganchev H., Soskova M.I., “Cupping and Definability in the Local Structure of the Enumeration Degrees”, J. Symb. Log., 77:1 (2012), 133–158  crossref  mathscinet  zmath  isi  elib  scopus
  15. Arslanov M.M., Cooper S.B., Kalimullin I.Sh., Soskova M.I., “Splitting and nonsplitting in the Sigma(0)(2) enumeration degrees”, Theoret Comput Sci, 412:18 (2011), 1669–1685  crossref  mathscinet  zmath  isi  elib  scopus
  16. Sorbi A., Wu G., Yang Yu., “Diamond embeddings into the enumeration degrees”, Mathematical Structures in Computer Science, 20:5 (2010), 799–811  crossref  mathscinet  zmath  isi  scopus
  17. Arslanov M.M., Batyrshin I.I., Omanadze R.Sh., “Structural properties of Q-degrees of n-c. e. sets”, Annals of Pure and Applied Logic, 156:1 (2008), 13–20  crossref  mathscinet  zmath  isi  scopus
  18. Affatato M.L., Kent T.F., Sorbi A., “Branching in the Sigma(0)(2)-enumeration degrees: a new perspective”, Archive For Mathematical Logic, 47:3 (2008), 221–231  crossref  mathscinet  zmath  isi  scopus
  19. Soskova M.I., Cooper S.B., “How enumeration reducibility yields extended Harrington non-splitting”, Journal of Symbolic Logic, 73:2 (2008), 634–655  crossref  mathscinet  zmath  isi  scopus
  20. Arslanov M.M., Cooper S.B., Kalimullin I.Sh., Soskova M.I., “Total degrees and nonsplitting properties of Sigma(0)(2) enumeration degrees”, Theory and Applications of Models of Computation, Proceedings, Lecture Notes in Computer Science, 4978, 2008, 568–578  crossref  mathscinet  zmath  isi  scopus
  21. Kent T.F., Sorbi A., “Bounding nonsplitting enumeration degrees”, Journal of Symbolic Logic, 72:4 (2007), 1405–1417  crossref  mathscinet  zmath  isi  scopus
  22. Charles M. Harris, “On the Symmetric Enumeration Degrees”, Notre Dame J. Formal Logic, 48:2 (2007)  crossref
  23. Omanadze R.Sh., Sorbi A., “Strong enumeration reducibilities”, Archive For Mathematical Logic, 45:7 (2006), 869–912  crossref  mathscinet  zmath  isi  scopus
  24. Solon B., “Co-total enumeration degrees”, Logical Approaches to Computational Barriers, Proceedings, Lecture Notes in Computer Science, 3988, 2006, 538–545  crossref  zmath  isi  scopus
  25. Solon B., Rozhkov S., “Enumeration degrees of the bounded total sets”, Theory and Applications of Models of Computation, Proceedings, Lecture Notes in Computer Science, 3959, 2006, 737–745  crossref  mathscinet  zmath  isi  scopus
  26. Cooper SB, Li AS, Sorbi A, et al, “Bounding and nonbounding minimal pairs in the enumeration degrees”, Journal of Symbolic Logic, 70:3 (2005), 741–766  crossref  mathscinet  zmath  isi  scopus


© Steklov Math. Inst. of RAS, 2025