RUS  ENG
Full version
JOURNALS // Algebra i logika

Algebra Logika, 2003, Volume 42, Number 1, Pages 37–50 (Mi al16)

Test Rank for Some Free Polynilpotent Groups
Ch. K. Gupta, E. I. Timoshenko

This publication is cited in the following articles:
  1. V. A. Roman'kov, E. I. Timoshenko, “Verbally closed subgroups of free solvable groups”, Algebra and Logic, 59:3 (2020), 253–265  mathnet  crossref  crossref  isi
  2. Ekici N., Oguslu N.S., “Test rank of an abelian product of a free Lie algebra and a free abelian Lie algebra”, Proc Indian Acad Sci Math Sci, 121:3 (2011), 291–300  crossref  mathscinet  zmath  isi  elib  scopus
  3. Ch. K. Gupta, E. I. Timoshenko, “The test rank of a soluble product of free Abelian groups”, Sb. Math., 199:4 (2008), 495–510  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
  4. E. I. Timoshenko, M. A. Shevelin, “Computing the test rank of a free solvable Lie algebra”, Siberian Math. J., 49:6 (2008), 1131–1135  mathnet  crossref  mathscinet  isi
  5. Ch. K. Gupta, E. I. Timoshenko, “First-order definability and algebraicity of the sets of annihilating and generating collections of elements for some relatively free solvable groups”, Siberian Math. J., 47:4 (2006), 634–642  mathnet  crossref  mathscinet  zmath  isi
  6. E. I. Timoshenko, “Computing Test Rank for a Free Solvable Group”, Algebra and Logic, 45:4 (2006), 254–260  mathnet  crossref  mathscinet  zmath  elib  elib
  7. Esmerligil Z., Kahyalar D., Ekici N., “Test rank of F/R ' Lie algebras”, International Journal of Algebra and Computation, 16:4 (2006), 817–825  crossref  mathscinet  zmath  isi  scopus
  8. Ch. K. Gupta, E. I. Timoshenko, “Criterion for Invertibility of Endomorphisms and Test Rank of Metabelian Products of Abelian Groups”, Algebra and Logic, 43:5 (2004), 316–326  mathnet  crossref  mathscinet  zmath  elib  elib


© Steklov Math. Inst. of RAS, 2025