Zhong Chi, Tianxiao Yang, Raghavan Dhanasekaran, “Teaching Practice of College Students' Marketing Course Based on the Background of the Internet Era”, International Transactions on Electrical Energy Systems, 2022 (2022), 1
Wei Wang, Xiaowei Chen, Tapan Senapati, “Content System of Physical Fitness Training for Track and Field Athletes and Evaluation Criteria of Some Indicators Based on Artificial Neural Network”, Discrete Dynamics in Nature and Society, 2022 (2022), 1
Limei Deng, Ying Chang, Jun Ye, “Risk Management of Investment Projects Based on Artificial Neural Network”, Wireless Communications and Mobile Computing, 2022 (2022), 1
Yanjun Chen, Sikang Zhang, Kalidoss Rajakani, “Accounting Information Disclosure and Financial Crisis Beforehand Warning Based on the Artificial Neural Network”, Wireless Communications and Mobile Computing, 2022 (2022), 1
Shuai Wang, Xia Zhao, Rahim Khan, “Influence of Different Passing Methods of Physical Fitness in Football Using Deep Learning”, Computational Intelligence and Neuroscience, 2022 (2022), 1
S. S. Zhumazhanova, I. D. Tatarinov, 2021 Dynamics of Systems, Mechanisms and Machines (Dynamics), 2021, 1
А. Е. Сулавко, “Высоконадёжная двухфакторная биометрическая аутентификация по рукописным и голосовым паролям на основе гибких нейронных сетей”, Компьютерная оптика, 44:1 (2020), 82–91 [A. E. Sulavko, “Highly reliable two-factor biometric authentication based on handwritten and voice passwords using flexible neural networks”, Computer Optics, 44:1 (2020), 82–91]
E. T. Zainulina, I. A. Matveev, “Binding Cryptographic Keys into Biometric Data: Optimization”, J. Comput. Syst. Sci. Int., 59:5 (2020), 699
T.A. Zolotareva, A.I. Ivanov, O.V. Selishchev, D.M. Skudnev, V. Breskich, A. Zheltenkov, Y. Dreizis, “Regularization of automatic training of Mahalanobis neurons for small samples of examples of the “Own” image”, E3S Web Conf., 224 (2020), 01024
Aleksandr Ivanov, Tatyana Zolotareva, Advances in Intelligent Systems and Computing, 1294, Software Engineering Perspectives in Intelligent Systems, 2020, 829
А. Е. Сулавко, “Абстрактная модель искусственной иммунной сети на основе комитета классификаторов и её использование для распознавания образов клавиатурного почерка”, Компьютерная оптика, 44:5 (2020), 830–842 [A. E. Sulavko, “An abstract model of an artificial immune network based on a classifier committee for biometric pattern recognition by the example of keystroke dynamics”, Computer Optics, 44:5 (2020), 830–842]
A E Sulavko, A E Samotuga, D G Stadnikov, V A Pasenchuk, S S Zhumazhanova, “Biometric authentication on the basis of lectroencephalograms parameters”, J. Phys.: Conf. Ser., 1260:2 (2019), 022011
Nikolay Abramov, Alexander Talalaev, Vitaly Fralenko, Oleg Shishkin, Vyacheslav Khachumov, Proceedings of the V International conference Information Technology and Nanotechnology 2019, 2019, 180
A A Nevzorov, A A Orlov, D A Stankevich, “Detection of quasi-harmonic signals with a priori unknown parameters in strong additive noise by machine learning methods”, J. Phys.: Conf. Ser., 1368:5 (2019), 052014
К. С. Сарин, И. А. Ходашинский, “Метод баггинга и отбор признаков в построении нечётких классификаторов для распознавания рукописной подписи”, Компьютерная оптика, 43:5 (2019), 833–845 [K. S. Sarin, I. A. Hodashinsky, “Bagged ensemble of fuzzy classifiers and feature selection for handwritten signature verification”, Computer Optics, 43:5 (2019), 833–845]
P S Lozhnikov, A E Sulavko, “Generation of a biometrically activated digital signature based on hybrid neural network algorithms”, J. Phys.: Conf. Ser., 1050 (2018), 012047
A. E. Sulavko, S. S. Zhumazhanova, G. A. Fofanov, 2018 Dynamics of Systems, Mechanisms and Machines (Dynamics), 2018, 1
Vladimir I. Vasilyev, Pavel S. Lozhnikov, Alexey E. Sulavko, Grigory A. Fofanov, Samal S. Zhumazhanova S., “Flexible fast learning neural networks and their application for building highly reliable biometric cryptosystems based on dynamic features”, IFAC-PapersOnLine, 51:30 (2018), 527
A E Sulavko, S S Zhumazhanova, “Biometric pattern recognition using wide networks of gravity proximity measures”, J. Phys.: Conf. Ser., 1050 (2018), 012082
I V Isaev, S A Burikov, T A Dolenko, K A Laptinskiy, S A Dolenko, “Improving the resilience of neural network solution of inverse problems in Raman spectroscopy of multi-component solutions of inorganic compounds to the distortions caused by frequency shift of the spectral channels”, J. Phys.: Conf. Ser., 1096 (2018), 012100