This publication is cited in the following articles:
V. B. Alekseev, S. S. Marchenkov, S. N. Selezneva, “Results from the Department of Mathematical Cybernetics in the Field of Discrete Structures and Algorithm Complexity”, MoscowUniv.Comput.Math.Cybern., 48:4 (2024), 225
S. S. Marchenkov, “Logical extensions of the parametric closure operator”, Discrete Math. Appl., 33:6 (2023), 371–379
S. S. Marchenkov, “Kriterii ekvatsionalnoi polnoty v trekhznachnoi logike”, Izvestiya vysshikh uchebnykh zavedenii. Povolzhskii region. Fiziko-matematicheskie nauki, 2019, no. 4, 29–41
S. S. Marchenkov, V. A. Prostov, “Equational Closure and Closure with Respect to Enumeration on a Set of Partial Multivalued Logic Functions”, MoscowUniv.Comput.Math.Cybern., 43:3 (2019), 118
Marchenkov S.S., “Fe-klassifikatsiya funktsii mnogoznachnoi logiki”, Vestnik Moskovskogo universiteta. Seriya 15: Vychislitelnaya matematika i kibernetika, 2 (2011), 32–39
S. S. Marchenkov, “FE classification of functions of many-valued logic”, MoscowUniv.Comput.Math.Cybern., 35:2 (2011), 89
S. S. Marchenkov, “The closure operator in many-valued logic based on functional equations”, J. Appl. Industr. Math., 5:3 (2011), 383–390
Marchenkov S.S., Fedorova V.S., “On solutions to systems of functional equations of multiple-valued logic”, Dokl. Math., 79:3 (2009), 382–383
Marchenkov S.S., Fedorova V.S., “Solutions to the systems of functional equations of multivalued logic”, Moscow Univ. Comput. Math. Cybernet., 33:4 (2009), 197–201
S. S. Marchenkov, “Ekvatsionalno zamknutye klassy chastichnykh bulevykh funktsii”, Diskretn. analiz i issled. oper., 15:1 (2008), 82–97
S. S. Marchenkov, V. S. Fedorova, “On solutions of systems of functional Boolean equations”, J. Appl. Industr. Math., 3:4 (2009), 476–481
Marchenkov S.S., “Strong closure operators on the set of partial Boolean functions”, Dokl. Math., 77:2 (2008), 288–289
S. S. Marchenkov, “A criterion for positive completeness in ternary logic”, J. Appl. Industr. Math., 1:4 (2007), 481–488
S. S. Marchenkov, “On the structure of equationally closed classes”, Discrete Math. Appl., 16:6 (2006), 563–576