RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya

Funktsional. Anal. i Prilozhen., 1987, Volume 21, Issue 1, Pages 1–10 (Mi faa1166)

Milnor numbers of nonisolated saito singularities
A. G. Aleksandrov

This publication is cited in the following articles:
  1. A. G. Aleksandrov, J. Sekiguchi, “Free deformations of hypersurface singularities”, Journal of Mathematical Sciences, 175:1 (2011), 1–16  mathnet  mathnet  crossref
  2. Jiro SEKIGUCHI, “A classification of weighted homogeneous Saito free divisors”, J. Math. Soc. Japan, 61:4 (2009)  crossref
  3. Yulia Karpeshina, Young-Ran Lee, “Absolutely Continuous Spectrum of a Polyharmonic Operator with a Limit Periodic Potential in Dimension Two”, Communications in Partial Differential Equations, 33:9 (2008), 1711  crossref
  4. S. Karakiliç, Ş Atilgan, O.A. Veliev, “Asymptotic formulae for the schrödinger operator with dirichlet and neumann boundary conditions”, Reports on Mathematical Physics, 55:2 (2005), 221  crossref
  5. Dirk Siersma, New Developments in Singularity Theory, 2001, 447  crossref
  6. Leon Karp, Norbert Peyerimhoff, “Spectral Gaps of Schrödinger Operators on Hyperbolic Space”, Math. Nachr., 217:1 (2000), 105  crossref
  7. Daniel C. Cohen, Alexander I. Suciu, “Homology of iterated semidirect products of free groups”, Journal of Pure and Applied Algebra, 126:1-3 (1998), 87  crossref
  8. V. S. Kulikov, “Generalization of Relations between Brieskorn Lattices for Nonisolated Singularities”, Funct. Anal. Appl., 29:4 (1995), 284–286  mathnet  crossref  mathscinet  zmath  isi
  9. Yakov Karpishpan, “Torelli theorems for singularities”, Invent Math, 100:1 (1990), 97  crossref
  10. A. G. Aleksandrov, “Nonisolated Saito singularities”, Math. USSR-Sb., 65:2 (1990), 561–574  mathnet  crossref  mathscinet  zmath
  11. A. G. Aleksandrov, “A de Rahm complex of nonisolated singularities”, Funct. Anal. Appl., 22:2 (1988), 131–133  mathnet  crossref  mathscinet  zmath  isi
  12. E. V. Frenkel, “Cohomology of the commutator subgroup of the braid group”, Funct. Anal. Appl., 22:3 (1988), 248–250  mathnet  crossref  mathscinet  zmath  isi


© Steklov Math. Inst. of RAS, 2025