RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya

Funktsional. Anal. i Prilozhen., 1984, Volume 18, Issue 3, Pages 73–74 (Mi faa1479)

Periodic finite-zone solutions of the sine-Gordon equation
A. I. Bobenko

This publication is cited in the following articles:
  1. U. Saleem, H. Sarfraz, Ya. Hanif, “Dynamics of kink-soliton solutions of the $(2+1)$-dimensional sine-Gordon equation”, Theoret. and Math. Phys., 210:1 (2022), 68–84  mathnet  crossref  crossref  mathscinet  adsnasa  isi
  2. Treibich A., “Nonlinear evolution equations and hyperelliptic covers of elliptic curves”, Regular & Chaotic Dynamics, 16:3–4 (2011), 290–310  crossref  isi
  3. A. O. Smirnov, “3-Elliptic solutions of the sine-Gordon equation”, Math. Notes, 62:3 (1997), 368–376  mathnet  crossref  crossref  mathscinet  zmath  isi
  4. A. O. Smirnov, “Elliptic in $t$ solutions of the nonlinear Schrödinger equation”, Theoret. and Math. Phys., 107:2 (1996), 568–578  mathnet  crossref  crossref  mathscinet  zmath  isi
  5. A. O. Smirnov, “Elliptic solutions of the nonlinear Schrödinger equation and the modified Korteweg–de Vries equation”, Russian Acad. Sci. Sb. Math., 82:2 (1995), 461–470  mathnet  crossref  mathscinet  zmath  isi
  6. A. O. Smirnov, “Real elliptic solutions of the “sine-Gordon” equation”, Math. USSR-Sb., 70:1 (1991), 231–240  mathnet  crossref  mathscinet  zmath  adsnasa  isi
  7. E. D. Belokolos, A. I. Bobenko, V. B. Matveev, V. Z. Ènol'skii, “Algebraic-geometric principles of superposition of finite-zone solutions of integrable non-linear equations”, Russian Math. Surveys, 41:2 (1986), 1–49  mathnet  crossref  mathscinet  zmath  isi
  8. M. V. Babich, A. I. Bobenko, V. B. Matveev, “Solutions of nonlinear equations integrable in Jacobi theta functions by the method of the inverse problem, and symmetries of algebraic curves”, Math. USSR-Izv., 26:3 (1986), 479–496  mathnet  crossref  mathscinet  zmath


© Steklov Math. Inst. of RAS, 2025